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Abstract. While most rule learning methods focus on categorical tar-
gets for tasks including classification and subgroup discovery, rule learn-
ing for numeric targets are under-studied, especially using probabilistic
rules: the only existing probabilistic rule list method for numeric targets,
named SSD++, is based on Gaussian parametric models. To extend this
method, we adopt an adaptive histogram model to estimate the probabil-
ity distribution of the target variable. We formalize the rule list learning
as a model selection problem, which we tackle with the minimum de-
scription length principle. We demonstrate that our method produces
rule lists with better predictive performance than SSD++.
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1 Introduction and Related Work

Learning rules from data is a long studied problem in inductive reasoning, data
mining, and machine learning. It has been widely used in practice as rules are
directly readable by analysts and domain experts, revealing actionable insights
for real-world data-driven tasks. However, rule learning for numeric targets is
under-studied, especially the task of inducing a rule-based global model for de-
scribing the whole dataset.

Classic rule learning algorithms often follow the separate and conquer strat-
egy: learn a single rule from the dataset, remove the covered instances, and
repeat the process until some stopping criterion is met. As a result, the separate
and conquer strategy leads to an ordered list of rules, also referred to as decision
list or rule list. While it is proved to be efficient in classification tasks [6], the
extension from categorical to numeric targets is non-trivial.

The criteria used in rule lists for categorical targets are often based on prob-
abilistic estimates (i.e., precision, false positive rate, etc), including 1) heuristics
for evaluating individual rules as local patterns, 2) global evaluation metrics
for a rule list model, and 3) statistics used for statistical significance testing in
order to prevent overfit [5]. However, for numeric targets, performing probabilis-
tic density estimation can be computationally expensive, especially when doing
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this a large number of times, i.e., each time when a rule is assessed. Specifi-
cally, standard approaches like kernel density estimation (KDE) sutffer from a
high computational cost (mainly due to the cross-validation needed for choosing
hyper-parameters), which makes it unsuitable for learning rule lists. Paramet-
ric models, however, are fast but may lead to mis-specification. One existing
method named SSD++ [11] assumes Gaussian distribution for the numeric tar-
gets of instances covered by a certain individual rule, but this is theoretically
sub-optimal and leads to self-contradiction. This is because any individual rule
can be regarded as the “union” of its refinements: for instance, data points satis-
fying some condition (A1) is the union of the data points satisfying (A1∧A2) and
(A1 ∧¬A2). However, the target variable within the previous three rules cannot
be assumed to be Gaussian at the same time, as the first one is by definition the
mixture of the other two.

To strike a balance between the computational cost and model expressive-
ness, we adopt adaptive histograms for density estimation for learning rules for
numeric targets. Our contribution are as follows: 1) we formalize the problem
of learning rule lists as a model selection task; 2) by showing that the model
selection criterion of the rule lists can be decomposed to the sum of local crite-
rion for each individual rule, we demonstrate our model selection criterion to be
compatible with the separate and conquer strategy; 3) we empirically showcase
that the rule lists obtained by our method outperforms that of SSD++ in terms
of prediction accuracy, measured by the mean squared error.

Related Work. Far fewer rule learning methods exist for numeric targets than
categorical targets. Besides SSD++, PRIM [3] proposes to sequentially search for
the rules that deviate from the global mean, which leads to a non-probabilistic
rule lists. Further, DSSD [13] proposes to learn a diverse set of non-probabilistic
rules for numeric targets. Next, instead of learning rules directly from numeric
targets, an alternative approach is to transfer regression rule learning to classi-
fication rule learning by dynamically cutting the targets [8]. Also, Meeng and
Knobbe thoroughly discuss about dealing with numeric targets by discretiza-
tion in rule learning for subgroup discovery [10]. Last, RuleFit [4] can generate
rules for numeric targets for constructing an ensemble model, which is less inter-
pretable than a single rule list. Note that some of these methods are developed
for the subgroup discovery task instead of predictive rule learning. Specifically,
our competitor SSD++ is originally proposed for subgroup discovery; however,
as pointed out in its original paper, it can be used for regression by formalizing
the rule list as a probabilistic model in a slightly different way.

2 Probabilistic Rule Lists for Numeric Targets

Adaptive histogram for numeric targets. Consider a one-dimensional random
variable Y taking values in R, a histogram model for Y is a set of cut points
(including boundaries), denoted as c = (c1, . . . , cK+1), where K represents the
number of bins. For any value y in the support of Y , the associated proba-
bility distribution, denoted by Ph(.), has density function defined and denoted
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as ph(Y = y) =
∑K

j=1 1[cj ,cj+1)(y)βj , where 1(.) is the indicator function and
β = (β1, ..., βK) is the parameter vector to be estimated from data; i.e., β repre-
sents the probability of Y taking values in each of all bins. In practice, β can be

estimated by the maximum likelihood estimator: β̂j =
|{cj≤y<cj+1}|
|S| (cj+1−cj)

, where |.| is
the cardinality function.

Histogram-based rule. Consider the d-dimensional feature variablesX = (X1, . . . ,
Xd), where each Xi a single dimension of X, and a target variable Y ∈ R. A
histogram-based rule is written as (X1 ∈ R1 ∧X2 ∈ R2 ∧ . . .) → Ph,S(Y ), where
each Xi ∈ Ri is called a literal of the condition of the rule. Specifically, each Ri

is a closed interval or a set of categorical levels. A rule in this form describes a
subset S of the full sample space of X, such that for any x ∈ S, the conditional
distribution P (Y |X = x) is approximated by the probability distribution of Y
conditioned on the event {X ∈ S}, i.e., P (Y |X ∈ S), which is modelled by an
adaptive histogram model, associated with S and hence denoted as Ph,S(Y ).
Thus, a histogram-based rule is a local probabilistic model for all instances that
satisfy the rule. To simplify the notation, when clear from the context we use S
to refer to the rule itself and the subset of all instances covered by the rule.

Histogram-based rule list. Precisely, a rule list is an ordered list of rules connected
by the “If...ElseIf...Else...” statements. For instance, a rule list containing
only two rules S1 and S2 can be written as “IF x ∈ S1, THEN Ph,S1

; ELSE
IF x ∈ S2, THEN Ph,S2 ; ELSE: Ph,S0”. Note that we use Ph,S0 to represent
the histogram that is associated with the instances not covered by any rule, and
referred to S0 as the “else rule”1. Therefore, a rule list connects multiple rules
and hence becomes a global model for the whole dataset: given any instance
(x, y), we can calculate the probability (density) by firstly going over the rule
list until x satisfies the condition of a certain rule, and then predicting the density
function of y conditioned on x by the histogram model associated with that rule.

3 Learning Rule Lists as a Model Selection Task

We formalize the task of learning a rule list as a probabilistic model selection
task. We adopt the minimum description length (MDL) principle [7] for the
model selection task. The MDL-based model selection has theoretic roots in in-
formation theory and can be regarded as an extension of Bayesian model selec-
tion. Further, it has a long history of being successfully applied in rule learning,
including classic methods like C4.5 and RIPPER [12, 2]. In practice, the MDL-
based model selection criterion can be viewed as a form of penalized maximum
likelihood, as we will elaborate next. We start with the criterion for optimal
histograms of individual rules and then discuss the global criterion for rule lists.

1 A related and widely used notion is the “default rule”. The difference lies in whether
the parameters associated with S0 is estimated by all instances (default rule) or by
instances that are not covered by any rule in the rule list (else rule).
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3.1 Preliminaries: learning adaptive histograms for individual rules

Consider an individual rule S (with a histogram with fixed cut points) and
all the m instances satisfying the condition of S, denoted as (xm, ym). Formally,
the optimal adaptive histogram h∗ among all possible histograms H is defined as
h∗ = argminh∈H (− log p̂h,S(Y

m = ym) +R(m,K)) ; note that 1) p̂h,S is the es-
timated probability density function with the maximum likelihood estimator for
β, 2) p̂h,S(y) is extended to p̂h,S(y

m) with the i.i.d assumption, and 3) R(m,K)
is the so-called regret, the “penalty term” of the MDL model selection criterion,
which is a function of sample size m and the number of bins of the histogram
K [9]. By definition, R(m,K) = log

∫
zm p̂h,S(Y

m = zm) [7]. The seminal work in
this research line [9] developed a dynamic programming optimization algorithm
with quadratic time complexity, despite the expensive numeric integral in R.

3.2 Model selection for learning histogram-based rule lists

The task of learning a rule list needs to simultaneously select the cut points
on features (for constructing the rules’ conditions) and on targets (for con-
structing the adaptive histograms). Formally, denote the (training) dataset as
D = (xn, yn), then the best histogram-based rule list, denoted as M∗, among all
possible rule lists M, is defined as

M∗ = arg min
M∈M

L(D,M) = arg min
M∈M

− log P̂ (yn|xn) +R(M) + L(M), (1)

where 1) P̂ (yn|xn) is the likelihood for the data, based on the maximum likeli-
hood estimator of the parameter β for all histograms; 2) R(M) is the MDL re-
gret term for the rule list as a global model, defined as R(M) = log

∫
zm P̂ (Y m =

zm|xn), which can be proved to be the sum of the regret terms R of all individual
rules [14]; and 3) L(M) is the code length, in bits, that is needed to encode the
rule list as a model [7]. Note that for a fixed M ∈ M, not only the conditions of
the rule but also the cut points for associated histograms are fixed. To calculate
L(M), we sum up the code lengths needed to encode the following: the number
of rules in M , the number of literals for each all individual rules in M , and the
exact variable and value used for the condition of each literal [7]. The formula
for calculating the length is the same as that of the method SSD++ [11], and
hence we skip the mathematical details here.

3.3 Algorithm: separate and conquer

As exhaustive search in rule learning is known to be computationally prohibitive
[6], we resort to the separate and conquer strategy: we iteratively search for the
next rule, add it to the rule list, and remove the covered instances, until adding
a new rule brings no further decrease in minimizing L(D,M). Since 1) the regret
terms R of the rule list can be written as the sum of the regret terms of each
individual rule, 2) L(M) can be decomposed to individual rules by definition,
and 3) the log-likelihood can be decomposed to the likelihood of each rule, the
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global model selection criterion L(D,M) can be decomposed to the sum of local
criterion of each individual rule. Hence, the separate and conquer strategy can
be viewed as a greedy manner of optimizing the global criterion.

To search for the next rule based on the current (incomplete) rule list, we grow
the rule by iteratively adding literals to an empty rule. Intuitively, we should not
search for the next rule by minimizing L(D,M) directly, as our goal is not to
minimize L(D,M) by adding one more rule only. Instead, we should search for
the next rule such that by adding this rule to the rule list, we take a step towards
our final rule list in the “steepest direction”. Informally, the “steepest direction”
can be thought of the direction that reduces L(D,M) most per extra covered
instance. That is, we use the heuristic named “normalized gain” [11]. Similar to
SSD++ we use beam search when growing individual rules to avoid (some) local
optima. The rule growing procedure continues as long as the normalized gain is
positive, i.e., L(D,M) keeps decreasing. Further, the rule list learning is stopped
when adding a new rule will not decrease the global criterion further.

4 Empirical Performance

We benchmark our method against SSD++ with widely used UCI datasets
for regression tasks, to investigate the predictive performance improvement by
adopting the non-parametric histogram models. We also include the results of
CART [1] as a baseline interpretable model, for which we use the implementation
from scikit-learn with post-pruning.

We report the mean squared error (MSE) and the total number of liter-
als in the rule list in Table 1, and the results are obtained by 10 random
train/test splits, in which 80% of the instances are used for training. We show
that our histogram-based approach outperforms SSD++ in most datasets. Thus,
the Gaussian assumption will indeed lead to sub-optimal results for rule learn-
ing. Further, we observe that CART outperforms our method in about half the
datasets, but CART in general produces more complicated models than our
method in terms of the number of literals in each rule (path from root to leaf).

Next, we observe that SSD++ produces much simpler models than our method.
This can be explained as follows: SSD++ and our method both use the MDL
principle to control the model complexity, and hence the rule can grow only
when the “gain” in likelihood exceeds the “cost” in the regret term and model
complexity. Since adaptive histograms are much more expressive than Gaussian
parametric models, it is “easier” for the rule to obtain substantial “gain” in like-
lihoods, which drives the rules to grow longer and hence cover smaller subsets.
As a result, more rules are needed to cover the whole dataset and hence our
method produces longer rules and a larger number of rules.

5 Conclusion and Discussion

We developed a rule list method for numeric targets with the adaptive histogram
model, and we demonstrated that the predictive performance is superior to the



6 L. Yang et al.

MSE # total literals

data Hist. Rule List SSD++ CART Hist. Rule List SSD++ CART

cholesterol 3287.72 3286.12 4081.33 12.17 1.92 26.85
autoMPG8 12.26 12.35 13.14 29.64 14.16 163.23
dee 0.64 0.89 0.26 24.85 4.62 63.62
ele-1 458790.85 481793.78 536584.54 26.25 13.36 51.99
forestFires 6520.97 7147.07 4447.27 85.19 61.31 15.29
concrete 72.19 74.86 50.66 126.88 53.98 2215.52
abalone 6.09 6.31 5.69 121.29 62.86 131.84

Table 1. Predictive performance measured by MSE, and model complexity measured
by the total number of literals in each model. The results are obtained in 10 random
train/test splits for each dataset.

existing method based on parametric Gaussian models. The limitation of our
method is scalability, due to the quadratic complexity of searching the optimal
adaptive histograms: for datasets with tens of features and thousands of sam-
ple sizes, the training process can take a few minutes. The future work may
be focused on developing methods for calculating the “score” of each rule list
approximately but efficiently.
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