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Abstract. We present an approach for mining differentially private
redescriptions. Applying differential privacy to pattern mining approaches
such as redescription mining is less straightforward than with numerical
methods, in part because local patterns are more susceptible to the
kind of noise inherent to differential privacy, and in part because the
typically combinatorial algorithms require many operations and become
computationally unaffordable when overloaded with privacy preserving
procedures. Our solution, and the two algorithms we provide, address
both the computational bottlenecks as well as the issues with noise. They
might also provide inspiration for other differentially private pattern
mining algorithms. Extensive experiments on real-world data validate the
usefulness of our algorithms.

1 Introduction

As awareness about the rights of data subjects rises, so does the demand for
privacy-preserving data mining methods. This trend, combined with concerns
about black-box models being used in many domains, has lead to a need for
methods that couple interpretability and privacy. Here we present algorithms
answering this need, bringing differential privacy to redescription mining.

Differential privacy [5] is the most promising approach for privacy preserving
data analysis. It allows to provide guarantees on the level of privacy offered, even
in the presence of side information. Differentially private results are also secure
against post-processing: no amount of post-processing will reveal any further
private information from the results of differentially-private algorithms.

It is widely recognized that pattern and rule-based approaches, such as
redescription mining [13], are highly interpretable data analysis approaches.
However, integrating differential privacy with such approaches is not simple,
as they are based on local properties of the data, which are more prone to
privacy leakage than global properties. Moreover, the combinatorial nature of
these approaches makes them typically more susceptible to noise than continuous
optimization methods.

We tackle these obstacles and present two algorithms based on existing
approaches for differential privacy and redescription mining: a greedy algorithm for
redescription mining, and the exponential and Laplace mechanisms for differential
privacy. Their successful combination requires developing novel methods. In



particular, we present a general technique to lower the sensitivity of the quality
measure to magnitudes well below 1, allowing much more accurate results to
be drawn from the exponential mechanism without compromising the privacy.
In addition, we use weighted reservoir sampling for memoization, yielding an
efficient implementation of the exponential mechanism.

2 Background and Related Work

Redescription mining. Redescription mining is a data analysis task that aims
at finding two different ways to describe almost the same observations. In our
setting, the data set D consists of a pair of tables, respectively denoted DL and
DR. Both tables are over the same entities (rows) but disjoint collections of
attributes (columns).

Such a pair of data tables, along with user-defined parameters, constitute
the input of redescription mining. A redescription consists of a pair of queries
denoted by qL and qR, one over either data table. A query consists of literals over
Boolean, categorical or numerical attributes, combined with logical conjunction
and disjunction operators, possibly involving negations. For instance, the query

q = (¬ Hypertension ∧ [State = CA]) ∨ [BirthY ≤ 1950]

describes entities, here individuals, who either do not suffer from hypertension and
reside in California, or are born before 1950. The collection of entities described
by the queries is called the support of the query, denoted supp(q).

The main quality of a redescription is that the queries have similar supports.
Referred to as its accuracy, it is measured using the Jaccard coefficient:

J(qL, qR) = |supp(qL) ∩ supp(qR)| / |supp(qL) ∪ supp(qR)| . (1)

In addition to having a high accuracy, to be of interest a redescription should cover
enough entities. This can be ensured by setting a minimum support threshold.

Since the introduction of redescription mining [26], various algorithms have
been proposed for the task, including algorithms based on decision trees [26, 32,
24], on mining and combining frequent itemsets [14], or considering regression and
correlation models [27]. We build on the ReReMi algorithm [10], that iteratively
grows the queries in a greedy fashion. Further details can be found in [13].

Differential privacy. Differential privacy ensures that it cannot be inferred, within
a fixed probability, whether or not a particular individual is included in a data set,
regardless of what other information the adversary might have. This is achieved
by withholding direct access to the data and only returning randomized outputs.

Formally, if D and D′ are two data sets that differ in exactly one row, A is a
randomized algorithm operating on these tables, S is any set of potential results
A might return, and ε ∈ [0, 1] is the privacy parameter (or budget), then A is
ε-differentially private (later also simply ε-private) if

Pr[A(D) ∈ S] ≤ eε Pr[A(D′) ∈ S] , (2)



Algorithm 1 SerenadeCS, client algorithm with client-side decisions
Input: Privacy budget εtot = εinit + εext + εqual, number of initial pairs I, number of

extensions L, minimum support zo, minimum accuracy Jmin, steepness s
Output: A set of redescriptions together with their accuracy R = {(qL, qR, J)}
1: function SerenadeCS(εinit, εext, εqual, I, L, zo, Jmin, s)
2: R← ∅
3: Q ←IntialPairs(εinit/2, I, zo, s)
4: for r0 ∈ Q do
5: ℓ← 0
6: J0 ← ComputeQuality(rℓ, εqual/(L|Q|))
7: while ℓ < L and Jℓ > Jmin do
8: ℓ← ℓ + 1
9: rℓ ← ExtendOne({rℓ−1}, εext/(2L|Q|), zo, s)

10: Jℓ ← ComputeQuality(rℓ, εqual/(L|Q|))
11: Add to R the last rℓ with Jℓ > Jmin, if any
12: return R

where the probability is over the randomness of A (see [6]).
The core mechanism for ensuring differential privacy with numerical outputs is

the Laplace mechanism, that perturbs numerical outputs with Laplace(0, ∆A/ε)-
distributed noise, where ∆A is the sensitivity of A, i.e. the maximum change
in the output of A given two inputs that differ in exactly one row. For other
than numerical outputs, the exponential mechanism [23] is used. The space of
all possible outputs of A must be endowed with a data-specific quality function
f

(
A(D)

)
, and the answer is sampled from this space with probability ∝ exp

(
ε ·

f
(
A(D)

))
. This ensures 2ε∆f -privacy [23]. Further developments in differential

privacy include concentrated differential privacy [7], which trades better behaviour
under composition to weaker definition of privacy. Our method is trivially (ε·(eε −
1)/2, ε)-concentrated differentially private [7], but further analysis of concentrated
differential privacy is beyond the scope of this paper.

After the initial formulation [5] and the introduction of the exponential
mechanism [23], differential privacy has seen significant interest in academia, and
recent years have brought uptake by the industry as well (e.g. [4]). Real-world
use of differential privacy has indicated that the typical assumption that ε < 1
is often unachievable (e.g. the US Census Bureau used ε = 19.61 for releasing
the 2020 US Census results [29]). Differentially private algorithms have been
proposed for mining frequent itemsets [31, 20], association rules [28, 22], as well
as subgraphs [30] or sequences [3].

3 The Algorithms

In this section we present two algorithms for differentially private redescription
mining: SerenadeCS and SerenadeES. Both algorithms are based on the
greedy redescription mining approach of ReReMi and assume that one side of



Algorithm 2 SerenadeES, client algorithm with private extensions
Input: Privacy budget εtot = εinit + εext + εqual, number of initial pairs I, number of

extensions K, minimum support zo, steepness s
Output: A set of redescriptions together with their accuracy R = {(qL, qR, J)}
1: function SerenadeES(εinit, εext, εqual, I, K, zo, s)
2: Q ←IntialPairs(εinit/2, I, zo, s)
3: for k = 1, . . . , K do
4: r ← ExtendOne(Q, εext/2K, zo, s)
5: Q ← Q∪ {r}
6: Remove extended redescription from Q
7: R← ∅
8: for all r ∈ Q do
9: R← R∪ {(r, ComputeQuality(r, εqual/|Q|))}

10: return R

the data has only Boolean and categorical attributes, a common assumption in
redescription mining (see, e.g. [10]).

Both algorithms consist of a client with no direct access to the data and a
differentially private engine, with full access to the data, that the client queries.
The two algorithms differ mainly on their client-side implementations, i.e. how
they use the differentially private engine’s methods. With SerenadeCS, more of
the decisions are made on the client side (CS), resulting in the ability to prune
low-quality results at the cost of an increased budget expenditure. SerenadeES
provides a thriftier alternative by letting the differentially private engine make
the decisions (engine side, ES).

We will next explain how the clients work before explaining how the differen-
tially private part has been implemented.

3.1 Client side

The pseudocode for the algorithms is given in Algorithms 1 and 2. Both algo-
rithms mine redescriptions through three main steps. The IntialPairs method
(Algorithm 4) returns redescriptions with a single literal in both queries. These
pairs are then iteratively extended into longer redescriptions. The ExtendOne
method (Algorithm 3) takes a set of redescriptions as input and returns a new
redescription, obtained by extending one of the input redescriptions by one literal.
The ComputeQuality method computes the noisy Jaccard coefficient and
support size of a redescription. The two algorithms differ on when the quality of
redescriptions is computed and how to select the next redescription to extend.

SerenadeCS closely follows the approach of ReReMi: it considers one initial
pair at a time (line 4 in Algorithm 1) for at most a fixed number of extensions
(line 7). In each iteration, SerenadeCS calls ExtendOne with the current
candidate as input (line 9), queries ComputeQuality to get the noisy Jaccard
of the extension (line 10), and decides whether to continue with the extension
process. This ensures we only attempt to extend redescriptions that are good



Algorithm 3 ExtendOne, extending a redescription
Input: Data D, collection of redescriptions Q, privacy budget ε, minimum support zo,

steepness s
Output: Extended redescription (q′

L, q′
R)

Private information: Data D = (DL, DR), sensitivity ∆f given D, zo, and s
Static variables: Associative array M , priority queue P
1: function ExtendOne(Q, ε, zo, s)
2: for all (qL, qR) ∈ Q \M do
3: for all one-literal extensions (q′

L, q′
R) do

4: select the extensions with the highest key key(f(qL, qR, zo, s), ε/∆f)
5: M [(qL, qR)]← (q′

L, q′
R) with age 1

6: P .push(k, (qL, qR))
7: k, (qL, qR)← P .pop()
8: (q′

L, q′
R)←M [(qL, qR)]; delete M [(qL, qR)]

9: increment the age of every (qL, qR) ∈M and remove expired from M and P
10: return (q′

L, q′
R)

enough, but it has two drawbacks: i) it needs to call ComputeQuality for every
extension, using plenty of budget; ii) it might attempt to extend a redescription
which has no good extensions, effectively wasting the associated budget. The
number of redescriptions returned by SerenadeCS is not predetermined, though
it is never larger than the number of initial pairs I.

SerenadeES addresses these drawbacks of SerenadeCS. At each of a fixed
number of extensions, it sends all current candidate redescriptions that can be
extended to ExtendOne and receives one extension back (line 4 in Algorithm 2).
The decision of which redescription to extend is made in the differentially private
engine. Furthermore, the Jaccard of the candidates is only computed for the
redescriptions that are returned (line 9). This approach saves on the privacy
budget compared to SerenadeCS. It also allows some redescriptions to be
extended multiple times while not wasting budget on redescriptions that cannot
be extended. On the flip side, ExtendOne might return a bad redescription,
and this will only become apparent when it is too late to replace the candidate.
SerenadeES always returns as many redescriptions as there were initial pairs.

3.2 Differentially Private Engine

Next, we present the three methods of the differentially private engine. We start
with a general overview and description of the main ingredients of our algorithms.

Reservoir sampling. Greedy extension is a standard strategy for building re-
descriptions [13]. Extending redescription (qL, qR) consists in appending a literal
to either of the queries using a disjunction or conjunction. The extension with
the highest accuracy that satisfies constraints (e.g. minimum support threshold)
is reported. For numerical attributes, all relevant intervals are evaluated in turn.
A pruning trick [10] allows to identify relevant intervals, i.e. those that impact
the accuracy, and avoid testing those that do not (see Section 3.3).



Algorithm 4 IntialPairs, generating initial candidates
Input: Privacy budget ε, number of initial pairs I, minimum support threshold zo,

steepness s
Output: A set of initial redescriptions R = {(qL, qR)}
Private information: Data D = (DL, DR), sensitivity ∆f given D, zo and s
1: function IntialPairs(ε, I, zo, s)
2: R← ∅
3: Set Si as size-1 reservoir sampler for i = 1, . . . , I
4: for all literals x over the non-numerical attributes of DL, numerical attributes

y in DR, and meaningful intervals [λ, ρ] of y do
5: Add initial pair (x, [λ ≤ y ≤ ρ]) to all reservoir samplers Si where

key
(
f(x, [λ ≤ y ≤ ρ], zo, s), ε/(I∆f)

)
is greater than the current key

6: for all reservoirs Si do
7: Add redescription from Si to R
8: return R

A differentially private variant of such an extension strategy is best imple-
mented with the exponential mechanism. Instead of reporting the best extension,
the algorithm will randomly pick one of the candidates with probabilities pro-
portional to their accuracies. The set of candidates will also include the current,
unextended, redescription associated to a sampling probability reflecting its
quality. That way, the structure of the queries will not reveal anything sensitive
about the data (see Section 3.3 about the case of continuous-valued attributes).

A naïve approach would be to store all candidates, but this would use too
much memory. Instead, we use weighted reservoir sampling [8, 19]. The idea is to
keep a reservoir of size k and evaluate candidate extensions in turn. For each one,
we sample a value u ∼ Unif [0,1]. If the probability of the candidate being selected
by the exponential mechanism is α, we compute its key as u1/α and store the
candidate in the reservoir if this key is larger than the current smallest key in
the reservoir (see [8, 19] for proofs of correctness). That is, for each candidate
(qL, qR) we compute

key(f(qL, qR, Θ), ε) = log(Unif [0,1]) · exp
(
ε · f(qL, qR, Θ)

)
, (3)

where f(qL, qR, Θ) is a function measuring the quality of (qL, qR) given parameters
in Θ, and retain the candidates with highest keys.

Extending a redescription. When called from SerenadeES, ExtendOne (Al-
gorithm 3) receives a collection of redescriptions Q. In each call, the method
samples from the distribution of all extensions of all redescriptions in Q, and one
selected candidate replaces the extended redescription. This proceeds for a fixed
number of iterations, progressively extending and replacing redescriptions in Q.
Between two successive calls to ExtendOne, only one redescription changes.

Our sampling approach also allows us to first draw a large sample and then
take a smaller sample from it, by simply retaining the entries associated with



the largest keys. As the collection Q can be large, we use this strategy to save
computational time.

Specifically, ExtendOne stores for each redescription encountered so far
the sampled extension for that redescription, together with its key. When a new
redescription is added to Q, ExtendOne samples an extension for it and stores
it. The redescription whose sampled extension has the largest key is selected and
the corresponding extended redescription is returned.

This memoization can lead to suboptimal choices if an extension of a re-
description gets a very low key value even though it is relatively good, and vice
versa. To counteract that, ExtendOne prunes stored extensions that are too
old, i.e. extensions that have not been selected in the past extension rounds. The
maximum age of an extension is a user-supplied parameter. When called from
SerenadeCS, ExtendOne operates on a single redescription and returns its
candidate extension having the highest key, without any memoization.

Computing initial pairs and redescription quality. IntialPairs (Algorithm 4)
builds initial pairs by enumerating all pairs of attributes (x, y), where x is an
attribute from DL and y is an attribute from DR. The selection of the initial
pairs from all pairs is based on a reservoir sampling approach. Assuming w.l.o.g.
that the non-numerical attributes are in DL, we consider as initial query qL every
literal consisting of a Boolean attribute or an attribute–category pair. For qR, we
consider every literal (including all relevant intervals) from DR to match qL, in
the same way as when extending an existing redescription. The sampling is done
over the queries qR. In order to generate I initial pairs, we populate I different
size-1 reservoirs, corresponding to I independent samples with replacement from
the exponential mechanism, ensuring privacy.

ComputeQuality computes the size of the intersection and the size of the
union of the input queries’ supports and returns them after applying Laplace
noise. The noisy Jaccard of the redescription is computed as the noisy intersection
size divided by the noisy union size.

3.3 Handling Continuous Attributes

Continuous attributes require extra care in both computational efficiency and
privacy. When appearing in a query, a continuous attribute y ∈ R will be bounded
within an interval, as [λ ≤ y ≤ ρ] (where either λ or ρ can be infinite). Finding
these intervals efficiently is the first problem. We follow the cut-point-based
approach of ReReMi [10]. This approach is based on the fact that only some
values of y will have an effect on the support of the extended query when
used as threshold. If an entity is not in supp(qR), whether or not it belongs to
supp([λ ≤ y ≤ ρ]) is indifferent w.r.t. the support of the extended query. Hence
we only need to consider as thresholds those values that determine whether
entities in supp(qR) are included in supp([λ ≤ y ≤ ρ]). These values, along with
−∞ and ∞, are called cut-points.

This approach extends to disjunctions and negations. It also helps us with
privacy. Returning the exact value of cut-points can leak information about the



data, as it reveals that y takes this exact value at least once.1 Let us assume that
the lower cut-points and upper cut-points are −∞ = λ1 < λ2 < · · · < λl and
ρ1 < ρ2 < · · · < ρp = ∞, respectively, and that we have chosen to use interval
[λi ≤ y ≤ ρj ]. Instead of reporting λi, we sample the value λ′

i we report as
lower threshold from Unif (λi−1,λi] and instead of ρj , we sample a value ρ′

j from
Unif [ρj ,ρj+1). Note that if i = 1 or j = p, we actually have a half-interval, which
we write [y ≤ λ′

j ] or [ρ′
j ≤ y], and no sampling is necessary for that threshold.

This sampling ensures that the accuracy of the redescription remains the same
while no information is leaked about the exact values in the data.

3.4 Lower-Sensitivity Quality Function

A key element of the algorithm is the distribution of the budget between the
steps. Both IntialPairs and ExtendOne use the exponential mechanism, which
provides 2ε∆f -privacy for quality f of sensitivity ∆f . For our application, the
standard quality function is the Jaccard coefficient, which has sensitivity 1, since
it takes values between 0 and 1. However, for interesting redescriptions, the
support size is well above 0 and, as a result, adding or removing a single row will
not change the Jaccard coefficient much. This motivates us to modify the quality
function to take into account the support size. Specifically, we multiply the
Jaccard coefficient with a logistic function centered at the user-defined minimum
support threshold zo. The quality function f becomes

f(qL, qR, zo, s) = J(qL, qR)/
(
1 + exp

(
−s · (|supp(qL) ∩ supp(qR)| − zo)

))
, (4)

where s is a parameter adjusting the steepness of the logistic curve.
For large values of s the sensitivity of f will still be 1. For smaller values of

s, however, it is possible to significantly reduce the sensitivity of f . Given zo,
s, and data set size n, the sensitivity of f can be calculated in O(n2) time by
considering all possible values for numerator and denominator in (1), plugging
them into (4), and identifying the largest change that can result from the addition
of a single row. Furthermore, the steepness can be optimized with a simple line
search over different sensitivity parameters. With the data sets and parameters
used in our experiments, the sensitivity was always less than 0.001, leaving more
budget to be spent on initial pairs and extensions.

Notice that knowing the sensitivity releases information about the data as
it depends on the data set size. This leaves a few options. The first is that the
differentially private engine computes the optimal steepness and uses the corre-
sponding sensitivity when distributing the budget. This approach is completely
private, but means that the user has no knowledge of the actual noise levels
used. The other extreme is to use a weaker form of differential privacy, where
the user knows the size n of the data set. The user can then find the optimal s
minimizing the sensitivity of (4). As an intermediate option, the user might query
for n, use the noisy estimate to compute near-optimal steepness, and give that
1 We assume that the fact that categorical attributes take each category at least once

is not private information.



as a parameter to the algorithm. This way, at the cost of some privacy budget,
the user retains some knowledge of the quality function and knows its steepness,
but no privacy is lost.

3.5 Other Parameters
The two key parameters of the algorithms are the number of initial pairs, I, and
the number of extensions, K or L. The higher I is set, the more redescriptions
will be returned, but each of them will receive a smaller portion of the privacy
budget, both when generating the initial pairs and when computing the privatized
supports and accuracies. On the other hand, the number of extensions (K or L)
dictates how complex the redescriptions can become. SerenadeCS will return no
more than I redescriptions, and none of them will have more than L extensions
(i.e. they have at most L + 2 literals in total). SerenadeES will return exactly
I redescriptions, but some of them might have just two literals, or some of them
might have K + 2 literals. Hence, if SerenadeCS is set to perform L extensions,
a comparable setting for SerenadeES is K = I · L extensions.

3.6 Privacy
The privacy of the proposed approach is mainly based on the exponential mecha-
nism. For this, we need to sample from every possible extension with the correct
probability. Next we show that this is the case. We then continue by analysing
the use of the budget, and conclude that the methods are indeed private.

Lemma 1. Given a redescription rℓ−1 = (qL, qR), the probability that Extend-
One in line 9 of Algorithm 1 returns an extension rℓ = (q′

L, q′
R), where either

i) q′
L is an arbitrary single-literal extension of qL and qR = q′

R, ii) q′
R is an

arbitrary single-literal extension of qR and qL = q′
L, or iii) qL = q′

L and qR = q′
R,

is ∝ exp(ε · f(q′
L, q′

R, zo, s)).

Proof. We can assume w.l.o.g. that qL = q′
L. Assume first that DR does not

contain continuous attributes. To select the extension of qR, ExtendOne can be
considered to go through every extension, computing their quality according to
f , and placing the extension into a stream together with a weight parameter that
is set to exp(ε · f). Finally, the algorithm will also place the unextended qR into
the stream with weight corresponding to the quality of (qL, qR). The weighted
reservoir sampler will select one item from this stream, so that the probability
of an item being selected is proportional to its weight [19, 8], thus sampling the
extension with correct probability.

For continuous attributes, the algorithm further perturbs the boundaries as
explained in Section 3.3. As this does not affect the quality, all extensions with
the same quality have equal probability to be selected, concluding the proof. ⊓⊔

Lemma 2. The extended redescription r = (q′
L, q′

R) returned by ExtendOne
when called in line 4 of Algorithm 2 is selected with probability that is proportional
to exp(ε · f(q′

L, q′
R, zo, s)) from all possible at-most-single literal extension to all

redescriptions in Q.



Lemma 3. Given a pair of single-literal queries (qL, qR) over data sets DL

and DR, the probability that IntialPairs returns (qL, qR) is ∝ I · exp(ε ·
f(qL, qR, zo, s)).

Lemma 4. The total budget used by SerenadeCS and SerenadeES never
exceeds εtot.

The proof for Lemma 3 follows the same lines as for Lemma 1, except that
the sampling is repeated I times, and is omitted. The proofs for Lemma 2 and
Lemma 4 are postponed to the full version of the paper. 2

Theorem 1. SerenadeCS and SerenadeES are εtot-differentially private.

Proof. Per Lemma 3, both algorithms generate initial pairs privately. Each
initial pair is an independent query to the data, spending altogether budget εinit.
Every extension in SerenadeCS is an independent, differentially private query
(Lemma 1). Due to the composability of differential privacy [6], they do not reveal
more information than permitted by their allocated budget. The same holds for
extensions in SerenadeES. Finally, quality calculations in ComputeQuality
use the standard Laplace mechanism and are private, in line with their allocated
budget. The total budgets do not exceed the allocated εtot (Lemma 4). ⊓⊔

4 Experimental Evaluation

To test our proposed methods, we conducted both quantitative and qualitative
experiments. The purpose of the quantitative experiments is to investigate the
behavior of the algorithms with different parameters and carry out an ablation
study. The qualitative experiments are meant to assess the usefulness of our
approach for real-world data analysis. For this reason, we did not do any parameter
tuning as that would consume some of the privacy budget.

All algorithms are implemented in Python and the experiments are run with
Python 3.6.8 on a machine with 2 AMD EPYC 7702 processors with 64 cores
each and 1 TB of main memory.

4.1 Data and Other Methods

The Mammals data set contains information about which mammal species inhabit
which areas of Europe on one side [25], and climate information on the other
side [16]. This data set has often been used in redescription mining literature (e.g.
[10, 11, 32, 18, 24, 12]). The data contains 194 species and 48 climate attributes as
its columns, with 2575 localities as its rows.

The MIMIC data set [17]3 is an example of health data where patient privacy
is critical. It contains de-identified health information about hospital patients.
2 The source code and the appendix containing all details that are postponed to the

full version of the paper are presented in https://github.com/maijuka/Serenade
3 Data set available at https://physionet.org/content/mimiciii/1.4/.



Our dataset contains two views: the diagnoses view and the lab events view.
The aim when mining this data set is to find out what kind of lab events are
associated with various diagnoses of the examined patients. The data set contains
107 Boolean attributes in the diagnoses view (1 denotes a positive diagnosis) and
104 ternary attributes in the lab events view, with 46 065 patients as its rows.

The VAA data set [15] contains the background information and answers to
questions regarding political opinions of candidates to the Finnish parliamentary
elections of 2011. The data was collected by an online voting advice application
(VAA). We removed candidates who did not provide answers to all questions,
leaving 1656 candidates, 9 background attributes and 107 opinion attributes.

The Open Sex-Role Inventory [21] (SR data set) is used to study gender roles
by measuring masculinity and femininity. The Right-Wing Authoritarianism Scale
[1] (RightW data set) was developed to measure the psychology of the followers of
facist regimes.4 Columns recording to the time spent answering the questions were
removed from the RightW and the SR data sets. These data sets have the same
variables on both sides; IntialPairs and ExtendOne are implemented to ensure
the same attribute cannot be used in both queries of the same redescription.

We also conducted experiments with other datasets. The results were not
significant and are postponed to the full version of the paper.

The main studied algorithms are SerenadeCS and SerenadeES. In addition,
for ablation studies, we used a variation of SerenadeES called NoSens. It
works like SerenadeES, but uses the standard Jaccard (1) instead of the lower-
sensitivity version (4) for computing keys (3). We also did a comparison to
ReReMi, the baseline non-private redescription mining algorithm [10].

For all experiments, we set Jmin = 0.3 for SerenadeCS and zo to 10 % of
data set size n.

4.2 Quantitative Experiments
In this empirical evaluation, we investigate the effects of parameters and carry
out an ablation study using NoSens.

Privacy budget. A typical value for the privacy budget is εtot = 1, though much
higher total budgets are sometimes used (e.g. [2, 9, 29]). Hence we first studied
the effect of varying the total budget εtot along with different ways to distribute
it between the different tasks. Total budgets of 0.5, 1, 10, and 100 were used. Of
these, εtot = 0.5 and εtot = 1 are typical values found in the literature, εtot = 10
is closer to values sometimes used in practice [29], and εtot = 100 can be seen as
a baseline of how the algorithms perform when privacy requirements are lifted.

Another parameter to consider is the distribution of the total budget be-
tween εinit, εext, and εqual. We used five different ways of distributing εtot
between εinit, εext, and εqual, respectively in the following proportions: d1 =
(0.33, 0.33, 0.33), d2 = (0.45, 0.45, 0.1), d3 = (0.6, 0.3, 0.1), d4 = (0.3, 0.6, 0.1), and
d5 = (0.25, 0.25, 0.5). The maximum age of an extension was set to 40, I = 20,
L = 4, and K = 80. Each experiment was repeated five times.
4 Data sets available at https://openpsychometrics.org/_rawdata/.
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Fig. 1. Effects of the budget on the accuracy. y-axis is true Jaccard. x-axis: (a) Varying
εtot, budget distribution d3. (b) Varying budget distribution, εtot = 1. Boxes represent
(left to right) NoSens, SerenadeES, and SerenadeCS. (c–e) same as in (a) with data
sets (c) SR, (d) RightW and (e) VAA, but without NoSens. (f) Accuracy of the initial
pairs, varying εinit, with εtot = 1. The horizontal bar: median, triangle: mean.

Results for these experiments on the Mammals data set are presented in
Fig. 1(a–b) where we see that both SerenadeCS and SerenadeES are ca-
pable of returning very good results when allocated sufficiently high budgets.
On the other hand, NoSens struggles even when allocated very high budgets.
Given its inefficient use of the budget, this is not surprising. Results for similar
experiments on three other data sets are presented in Fig. 1(c–e) where we see
that SerenadeCS returns clearly better results with almost all parameters for
these datasets. We can also see that VAA (Fig 1(e)) yielded generally poor results
regardless of budget and algorithm. This is explained by the fact that the non
differentially private redescription mining algorithm ReReMi5 also fails to mine
good quality redescriptions from these data sets. These results are postponed to
the full version of the paper. From Fig. 1(f) we see that we get slightly better
initial pairs with a higher budget, which could be the reason why the distributions
d3 and d2, having the highest budgets for initial pairs, perform slightly better
than the other budget distributions.

SerenadeES typically has higher variance on the accuracy of the results,
giving accuracies both higher and lower than SerenadeCS. This is in line with
the expected behavior. Of the different budget distributions, d3 seems to be
consistently giving the best results, although the differences are not significant.

5 Source code available at https://pypi.org/project/python-siren/ [10]
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Fig. 2. Effects of pruning results with low noisy Jaccard. (a) Varying εtot, budget
distribution d3. (b) Varying εtot, budget distribution d1. Left box: SerenadeES, right
box: SerenadeCS. The horizontal bar: median, triangle: mean.

An analyst is typically not interested in results with very low reported accuracy
(noisy Jaccard). Figure 2 repeats Fig. 1(a–b) for SerenadeES and SerenadeCS
after removing redescriptions with noisy Jaccard below 0.3. The average and
median for SerenadeES improve, and especially the lower end of the tail rises,
as expected. We can also see that this pruning leaves some redescriptions with
true accuracy below 0.3, but does not actually discard many of those reported to
be good. The discrepancy between the reported and true accuracy is an important
feature: if the system reports a redescription as having a high accuracy, the user
should be able to trust that it truly is so.

Number of initial pairs and reliability of noisy Jaccards. Next we investigate
the effects of the number of initial pairs. For these tests, the maximum age was
always set to be twice the number of initial pairs, and the number of extension
rounds was four times the number of initial pairs. Budget distribution d1 was
used throughout. Recall that more initial pairs means the budget is divided
between more redescriptions. This shows especially strongly in the differences
between the true and reported accuracies (Figure 3).

Figure 3 also shows that SerenadeCS returns fewer redescriptions than
SerenadeES and that it occasionally reports overly optimistic Jaccard values
even with I = 20. This is due to its mediocre use of the budget, leaving just
slivers for relevant quality computations. Note that reported accuracies for
SerenadeCS are cut above Jmin = 0.3 through filtering. With 80 initial pairs,
reported Jaccards become less correlated with true Jaccards for both methods,
as budget per redescription dwindles.

Maximum age. The final quantitative study probes the effects of the maximum
age memoization in ExtendOne in SerenadeES. We investigated this by
setting K = 80 and trying maximum ages 0 (computing extensions anew in every
iteration), 5, 10, 20, 40, 60, and 81 (stored extensions never expire). We found
that the memoization has a clear beneficial effect on the running time. Using
maximum age 20 brings the running time down to about 25 min, from over 70 min
without memoization (maximum age 0). Most redescriptions are selected for
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Fig. 3. Effects of the number of initial pairs. The y-axis represents the true Jaccard
whereas the x-axis represents the noisy Jaccard. (a) SerenadeCS and I = 20. (b)
SerenadeCS and I = 80. (c) SerenadeES and I = 20. (d) SerenadeES and I = 80.

extension within about 20 steps, so the running time does not improve noticeably
beyond that. On the other hand, the maximum age did not seem to have a
significant effect on the quality.

4.3 Qualitative Experiments

Next, we present a few results mined from different datasets, as anecdotal
examples of results one can expect by our algorithms with these kinds of data
sets. We did five runs of the algorithms for the MIMIC, VAA, RightW, SR, SSC,
Psycho, and Pref data sets with total budget 1 and budget distribution d3. The
results were chosen over five runs for both algorithms, so the total budget per
data set is 10. The results with VAA, SSC, Psycho and Pref datasets, and the
raw redescriptions are postponed to the full version of the paper.

An example result (qL, qR) from MIMIC with SerenadeCS is

( Atrial Fibrillation , Uric Acid = 1 ∨ Creatine Kinase = 0 ) ,

meaning that the set of patients who had atrial fibrillation (a type of arrhythmia,
abnormal heart rhythm) corresponds to the set of patients whose uric acid (waste
product in blood) test results were abnormal or whose creatine kinase (enzyme
related to energy production) test results returned normal values. The reported
accuracy of this redescription is 0.424 and its true accuracy is 0.227. Such results
can be used to understand the procedures at this hospital, and as they are
privatized, the results can also be communicated more widely without putting
the privacy of patients in jeopardy.

A result with SerenadeES from the RightW data set tells that the set
of participants who moderately or strongly agreed that “You have to admire
those who challenged the law and the majority’s view by protesting for women’s
abortion rights, for animal rights, or to abolish school prayer” corresponds to the
set of participants who did not vote. The reported accuracy of this redescription
is 0.428 and its true accuracy is 0.538.

A result from the SR data set with SerenadeCS the set of participants who
agreed or slightly agreed that they are the happiest when they are in their bed
corresponds to the set of participants who agreed or slightly agreed that they



give people handmade gifts and are between 14 and 32 years of age. The reported
accuracy of this redescription is 0.651 and its true accuracy is 0.725.

5 Conclusions

It is the nature of differential privacy and local pattern mining that the user can
never be entirely certain whether a pattern reported by the algorithm actually
represents a strong pattern in the data. But careful selection of the parameters
allows to avoid most of the pitfalls, and when a privacy budget higher than 1 is
available, the problem essentially vanishes. Even with a privacy budget of at most
1, the results can be very useful. Of the two approaches presented, SerenadeCS
gives results with higher (true and reported) Jaccard, but with lower correlation
between the two, meaning that a good-looking result from SerenadeCS might
turn out not to be so good in reality. SerenadeES, on the other hand, returns
more truthful Jaccards, thanks to its better use of budget, but its extension
method might lead to generally somewhat inferior results.

Overall, the reported strong patterns are reliably present in the data. This
means that a user who obtains interesting strong patterns via these differentially
private approaches can seek further means to confirm them, for example by
applying for a research permit for the data set or by conducting a separate
confirmatory study. The techniques presented in this paper might also be used to
implement other differentially private pattern mining algorithms in the future.
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